Lab Report Part II

Heating the sample in a water bath at 100 degrees Celsius denatures them. Next, cellular debris is spun down in the centrifuge and appears as a pellet at the bottom. The DNA is contained in the liquid, which is then transferred to the tube. To continue the process, PC amplification is conducted. One must add PC Master Mix solution to the sample DNA to prepare the polymerase chain reaction. The mix contains water, a buffer to keep the correct pH for the reaction; large quantities of the four nucleotides; large quantities of electioneered DNA primers; and a heat-stable DNA polymerase.At the same time, one will prepare negative and positive control reactions.

The positive contains positive control DNA while the negative contains sterile denizen water. Both contain the PC solution. Once reaction tubes have been loaded onto the PC machine, DNA replication starts.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

By doing this, one can know temperature, time remaining, cycle number, melt, anneal, and extend. The first step, melt, is to separate the two DNA chains in the double helix by heating the vial containing the PC reaction mixture to 95 degrees Celsius for 30 seconds. The vial is cooled at 60 degrees Celsius.The final step, extend, is to allow the DNA polymerase to extend he copy DNA strand by raising the temperature to 70 degrees Celsius for 45 seconds. Separation of the strands, annealing the primer to the template, and the synthesis of new strands all take less than two minutes. At the end of a cycle, each piece of DNA in the vial has been duplicated.

The cycle can be repeated. The PC product must be purified. First, insert the microelectronic column of appropriate size into a collection tube. Then, add 400 LU of buffer and the entire PC content to the column. Spin the column at 3,000 RPM in a fixed-angle centrifuge for 15 minutes.The PC product should be trapped in the column. Remove the collection tube and discard it. Next, invert the column and attach it to a new collection tube.

Add 50 LU of buffer to the inverted column, which will loosen the DNA Spin the inverted column at 3,000 RPM for 2 minutes to collect the sample, and then discard the column. One must then prepare for sequencing. The PC tube now contains almost nothing but copies of the ASS radar.

A set of 12 primers; six for each strand of the double-stranded DNA, is used. The PC product from the previous step is added to the tube and another PC is run.Each DNA strand binds the primer at one end and will have a fluorescence-tagged terminator at the other end.

DNA sequencing is now ready to complete. One has 12 tubes that contain the final PC product, which is a mix of DNA pieces of variable length. All DNA pieces in each tube start with the same primer yet end with a different nucleotide tagged with a fluorescent marker. The individual DNA pieces are separated by using an automatic sequencer that performs gel electrophoresis on the DNA in each tube. The sequencer has a thin capillary tube attached at one end to a syringe mechanism that contains buffer solution.The tube is filled with buffer solution and the opposite end is inserted into one of the tubes containing the DNA pieces.

An electric current is applied so that the end of the tube in contact with the DNA has a negative charge and the syringe end has a positive charge. DNA molecules move through the tube toward the positive charge end, with the smaller pieces moving faster than the ones that are larger. Optical detectors detect the color of the fluorescence.

A complete set of DNA pieces with differentiated sizes were generated. The sequencer flushes out of the buffer from the tube, moves the tray, and runs the electrophoresis gain.This continues until all 12 tubes are examined. The resulting steps of the sequences are collated by a computer program to build the complete sequence of the gene. After the information for the sequence has been gathered, the computer builds the actual sequence by matching together the different pieces.

One now has the ASS radar sequence for this bacterial species. To identify the sample, one must first view the data output from the sequencer. Then, one can go to the INCUBI site to search. On the site’s BLAST page, one will enter the data and follow the instructions to obtain results.Methods: Patient samples such as fluid from lymph node, stool, urine, blood, and sputum are used for the purpose of identifying possible pathogens. PC contains everything that is necessary to carry out the polymerase chain reaction to amplify the ASS RNA gene. It consists of water; a buffer to keep the mix at the correct pH for the PC reaction; large quantities of adenine, cytosine, guanine, and thymine; large quantities of electioneered DNA primers that bind the ASS radar region to initiate the replication process; and a heat-stable DNA polymerase that extends the copy DNA strand.The desired DNA is separated room all others by an automatic sequencer that performs gel electrophoresis, which is a method to separate molecules based on differences in size.

The sequencer has a thin capillary tube attached at one end to a syringe mechanism that contains a buffer solution. The tube is filled with buffer solution and the other end inserted into one of the tubes containing the DNA pieces. Then, an electric current is applied so that the end of the tube that is in contact with the DNA has a negative charge and the syringe has a positive charge. The DNA molecules move through the tube.Near the syringe end, the capillary tube asses through a laser beam that excites the fluorescent markers, and optical detectors detect the color of fluorescence.

The sequencer flushes out the buffer, moves the tray, and runs the electrophoresis again. When a person has the ASS radar sequence for a particular bacterial species, they can compare it with all other known ASS radar sequences for identification. The BLAST nucleotide search engine is used by pasting the data in the box labeled “Enter accession number, gig, or FAST sequence,” in the “Enter Query Sequence” near the top of the page.